
Renewable Energy 217 (2023) 119123

A
0

Contents lists available at ScienceDirect

Renewable Energy

journal homepage: www.elsevier.com/locate/renene

Classification of tall tower meteorological variables and forecasting wind
speeds in Columbia, Missouri
Sarah Balkissoon a,b,∗, Neil Fox a, Anthony Lupo a, Sue Ellen Haupt c, Stephen G. Penny d,b

a Atmospheric Science Program, School of Natural Resources, University of Missouri, USA
b Cooperative Institute for Research in Environmental Sciences, Boulder, CO, USA
c Research Applications Lab, National Center for Atmospheric Research, Boulder, CO, USA
d Sofar Ocean, San Francisco, CA, USA

A R T I C L E I N F O

Keywords:
Self-Organizing Maps (SOMs)
Autoregressive Integrated Moving Average
(ARIMA)
Long Short-Term Memory (LSTM) networks

A B S T R A C T

The wind speeds given in 10 min intervals is forecast using multiple methods inclusive of persistence,
statistical methods of ARIMA as well as artificial intelligence methods of Artificial Neural Networks. Tall tower
meteorological variables in Columbia, Missouri are clustered using Self-Organizing Maps after the optimal
number of clusters was determined using the Elbow and Silhouette methods among others. The optimal number
of clusters, 𝑘 was given as 4 for all methods. The data were then grouped into three Intervals which consisted
of approximately 50 percent and over of vectors or rows from the data frame. These intervals were then used
as training and testing for the forecast models of Long Short-Term Memory Networks with pressure and wind
speeds as inputs as well as lagged wind speeds as inputs. Other models using these intervals in our analyses
include Moving Autoregressive Integrated Moving Average (ARIMA) and persistence. From the results obtained
from the ARIMA, the metric of the root mean square error (RMSE) ranged from approximately 0.6 to 1.0 ms−1

for forecast horizon 2 to 12 in increments of 2. Interval2 had the upper and lower values and thus showed
most variability in errors because it encompassed most of spring, all of summer and the beginning of fall. The
moving ARIMA showed lower errors than the LSTM with pressure and wind speeds inputs for all the intervals.
This may be attributed to the difficulty in representing the system’s non-linearity and high dimensionality
by using just the wind speeds and pressure as inputs. The lagged co-ordinates of the wind speed was then
examined and used as inputs for the LSTM. The metric used for the evaluation of prediction of the forecast
horizons of 60, 120, 180, 240, 300 and 360 min or 1, 2, 3, 4, 5 and 6 h ahead is the Normalized Root
Mean Square Error (NRMSE). These models were compared to the benchmark model of persistence. It was
determined that all of the models beat persistence and the LSTM with the lag series outperforms the LSTM
with pressure and wind speed as inputs. The Moving ARIMA is now beaten by the lagged series LSTM in all
intervals for at least 2 time forecast horizons of 60 and 120 min or 1 and 2 h. It is thus shown that the
Artificial Neural Network method with the lagged series inputs is the best performing model.
1. Introduction

1.1. Wind speeds

Wind speeds closer to the ground are subjected to resistance and
friction. Even though these winds are highly positively correlated with
each other, the correlations grow weaker with height as noted in both
this study and Cao et al.’s [1]. Due to local surface characteristics
and large scale forcing mechanisms such as pressure and temperature
differences, wind is one of the most difficult meteorological variables
to forecast [2]. Also, since the atmosphere is highly nonlinear and
high dimensional, it is especially difficult to forecast this variable in
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the much needed higher resolutions and longer time horizons [3]. The
higher resolution shows more details of the faster variations in wind
speeds caused by turbulence and other factors. The importance of such
forecasts stems from the ability to aid in the scheduling, dispatching
and adjusting electricity reservations [3]. In our work we are looking
at short term forecasting at high resolution (10 min wind speeds at hub
height).

1.2. Forecasting of wind speeds

Due to the stochastic nature of wind speeds, forecasting this variable
is important for its optimal integration into the power grids [4]. These
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short term forecasts, can be used by plant managers to adjust turbine
components to achieve more efficiency. Another advantage of short
term forecasts is the ability to make turbines operable closer to extreme
weather events before shutting down. Daily short term forecasts are
also important as they relate to the operability of the turbines in terms
of their cut-in and cut-off wind speeds as they aid in the reduction of
structural damage to infrastructure [1].

There are numerous methods that have been used to forecast wind
speed values, some of which are illustrated in Fig. 1. Please see the
acronyms1 associated with this chart. The methods incorporated in
this paper are Artificial Intelligence (AI) methods which are compared
to statistical models as well as the benchmark of persistence. The
significant difference between these two methods is that statistical
multiple linear regression is written in terms of a set of linear operators
whilst Artificial Neural Networks(ANNs) are representative of a linear
combination of simple nonlinear functions [5]. A mapping is done from
random input vectors to output vectors without the assumption that
there is a fixed relationship between the two [6]. ANNs have the ability
to learn from past data by recognizing patterns among the observations
and using these to forecast into the future [6]. Research has indicated
the superiority in prediction accuracy of ANNs to statistical regression
especially as the non-linearity of the problem increases [5]. Previous
studies, namely [7,8], done in Missouri, found the wind speeds to be
chaotic in nature, hence motivating the choice of this method to address
the complexity and non-linearity of the data.

1.3. Wind power

From the relationship 𝑃 = 1
2𝜌𝐴𝑉

3 where P is the available power at
the turbine, 𝜌 is the density of air, 𝐴 is the area swept by the turbine and
𝑉 is the wind speed, the two meteorological variables which determines
the available turbine power are 𝜌 and 𝑉 . The latter variable has the
reater influence as the power varies as the cube of 𝑉 . The air density
s dependent on pressure and temperature as seen from the following
quation [9]

= 𝐷
( 273.15

𝑇

) [𝐵 − 0.3783𝑒
760

]

(1)

where 𝐷 is 1.168 kg∕m3 — the density of dry air at standard at-
ospheric temperature (25 ◦C) and pressure (100 kPa) and B is the

arometric pressure in torr, e is the moist air vapour pressure in torr.
ence, as seen in subsequent sections of the methods, these two mete-
rological parameters, will be considered, together with wind speeds,
hen determining the inputs to the Neural Network.

.4. Literature review

A comparative analysis of ARIMA and LSTM models in predicting
ourly wind speeds indicated that the RMSE was less than of the
RIMA method. An analysis of the existing literature and the studies
one by [10] showed that for smaller datasets, ARIMA performed
etter while for larger datasets, deep learning techniques such as LSTM
utperform the statistical methods such as ARIMA. Another study done
y [11] forecasts 10-minute wind speeds as done in our study, but uses
uzzy set theory to conduct attribute reduction of the factors affecting
he wind speeds instead of the magnitude correlation plot to determine
he inputs to the LSTM model. This simplified input improves the
ccuracy as well as the speed of the model [11]. In [12], dimensionality
eduction of the meteorological data that affects the wind speed is con-
ucted via principal component analysis (PCA). This process showed
he most improvements in terms of errors when compared to models’

1 AI-Artificial Intelligence, ANN-Artificial Neural Networks, ANFIS-Adaptive
euro-Fuzzy Interface System, SVM-Support Vector Machine, AR-Auto-
egressive, MA-Moving Average, ARMA-Auto-Regressive Moving Average,
RIMA-Auto-Regressive Integrated Moving Average.
2

a

inputs of the historical wind speed data and other exogenous variables.
In Ref. [13], the authors compared the results of two models, LSTM and
Support-Vector Machine (SVM) to predict wind speeds. It was deter-
mined that of the two algorithms the LSTM produced the lower RMSE
due to its ability to remember patterns for a longer duration. Hybrid
simulations, using the metric of RMSE, determined that the LSTM-
ARIMA model had lower forecasting errors when compared to the LSTM
and SVM models individually [14]. Another paper that incorporates
clustering to select the training samples before feeding them to the
LSTM focuses on day-ahead forecasting [15]. They utilized a density
based spatial clustering (DBSCAN), deep feature extraction and LSTM
forecasting, which out performed the benchmark methods of random
forest (RF), least square support vector regression (LSSVR) and back
propagation neural network (BPNN), by at least 17% [15]. In another
comparative study of forecasting hourly wind speeds for a year, Neural
Networks was compared with the statistical method of ARMA in which
the ARMA was outperformed by all the other methods; the feed forward
neural network (FNN), recurrent neural network (RNN), LSTM and
the gated recurrent unit (GRU) [16]. The ANN utilized for short term
forecasting of wind speeds usually perform better than the time series
methods with a few exceptions [16]. The authors considered several
variables to predict the target variable, including wind direction, wind
speed with one time step lag, pressure and temperature. After various
permutations of the inputs, it was found that the wind speed with the
one time lag had the largest correlation with the wind speed and as such
it was deemed the most important feature [16]. In [17], the variations
of inputs into a LSTM as well as a 1D-CNN were also investigated.

The objective of this paper is to apply multiple forecasting tech-
niques of tall tower data in Missouri; persistence as a benchmark,
statistical methods of ARIMA and ANN techniques in clustering and
subsequently forecasting using LSTM. The novelty of this work includes
the usage of the competitive learning Neural Network, SOMs, in the
clustering of the data with similar patterns which are then the inputs
into the LSTM. This feature of data mining, clustering of data, allow
for the preprocessing of the data and thus the accurate development of
forecasting models [13,15]. Short-term forecasting of tall tower wind
speed in Columbia, MO for this scale is carried out. The proposed
methodology is tested using real-world tall tower data and it outper-
forms other known prediction methods. The subsequent structure of
the paper is as follows. Section 2 describes the data used in this study,
Section 3 introduces the concepts of the methods incorporated in this
paper, Section 4 discusses the results whilst Section 5 provides thoughts
on future analyses that could be conducted and concludes the paper
collectively.

2. Data

Columbia, Missouri is located in 038◦53.270’N latitude and
092◦15.820’W longitude and has a site elevation of 255 m as seen in
ig. 2. Ten-minute tall tower wind speed, wind direction and temper-
ture data in 2009 from this region were used in our study [18]. The
espective units are ms−1, degrees and degrees Celsius, respectively.
he anemometer orientations were 120◦ and 300◦ for the tall tower
eight of 68 m. Channels 1 and 2 represent the respective wind speed
imes series. The larger of the wind speed values at each time step
ere taken and labelled as Max1. The wind direction time series at

his height level was given from channel 7 and sine of these angles was
abelled as Direction1. The temperature time series from 2 m logger
eight were also utilized in our analyses, taken from channel 11, it is
eferred to as Temp. Hourly maximum pressure data was taken from
niversity of Missouri, Extension’s Missouri Historical Agricultural
eather Database. Each hourly pressure value was repeated five times.

his time series, labelled as Pressure, along with Max1, Direction1 and
emp were combined and used in all of the analyses for Columbia68

s detailed in the Methods section below.
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Fig. 1. Methods for wind speed forecasting.
3. Methods

Artificial Neural Networks (ANN) have to date been applied to a
multitude of fields in solving complex problems. These data-driven
models are utilized especially as physically-based mathematical mod-
els are difficult to construct given the high non-linearity of natural
systems [19]. As defined by Basheer and Hajmeer [5] and Ramasamy
et al. [20] , ANNs can be considered as a system of densely inter-
connected processing elements, also called artificial neurons or nodes,
which have the ability to conduct parallel computations of input data
. Complex relationships are derived from the input and the output.
The input variables are multiplied by weights and biases are added to
these products. These are then passed through transfer functions for the
generation of the outputs [20].

ANNs, being abstractions of biological systems, have the advantages
of processing data that are highly nonlinear. These robust systems
have the ability to learn and generalize imprecise and fuzzy data [5].
Data are allowed to be processed faster and have a better fit amidst
inaccuracies from measurement errors. The system in its learning is self
updating and has the ability to unlearn data as well [5].

There are many applications of ANNs, which include modelling,
classification, pattern recognition and multivariate data analysis prob-
lems [5,20]. Here, we will focus our attention on the clustering of
the data into various clusters and then on subsequent modelling and
forecasting. Clustering as described by [5], is formed by investigating
the similarities and differences of the inputs based on their inter-
3

correlations. Kohonen networks or Self-Organizing Feature Maps
(SOMs), the unsupervised learning ANN where the actual values are
not required for the training set, are used in this study. Forecasting is
also done by training the ANN using a training set of historical data. A
Recurrent Neural Network (RNN) is utilized especially for its dynamic
memory capabilities where the outputs of neurons are fed as inputs
to the same neurons or other neurons in the preceding layers [5]. A
general overview of the methods incorporated in this study is depicted
in the flow diagram below. More details of these methods are given in
the following sub-sections.

3.1. Methods determining the number of clusters

Clustering analyses as mentioned in [21], are statistical methods
which are used to partition multivariate data into subsets. There are
numerous methods that can be used to determine the optimal number
of clusters to classify the data into relatively homogeneous groups,
such as the Elbow Method, Silhouette Analysis and Gap Statistic. These
methods, which are used in this study, are outlined below. We have
considered in the analyses this multivariate data set (of length 𝑛) of
variables wind speed, direction, temperature and pressure. We denote
these points as 𝑥𝑖 for 𝑖 = 1,… , 𝑛.

The Elbow Method is determined by plotting the within-cluster sum
of squares (WCSS) against the number of clusters, say 𝑘. The 𝑊𝐶𝑆𝑆(𝑘)
gives the sum of the squared distances between each data point, say 𝑥𝑖,

in all clusters and their associated centroids denoted as 𝑥𝑗 (which is
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Fig. 2. Tall tower location.

Fig. 3. Methods for wind speed forecasting utilized in this study.
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the geometric centre or the arithmetic mean position of all the points
in the plane figure). This can be written as follows.

𝑊𝐶𝑆𝑆(𝑘) =
𝑘
∑

𝑗=1

∑

𝑥𝑖𝜀𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑗
‖𝑥𝑖 − 𝑥𝑗‖

2 (2)

The changes in 𝑊𝐶𝑆𝑆 with a range of 𝑘 determines the optimal
umber of clusters in accordance with the Elbow method. The value in
hich 𝑘 elbows or the point where the rate of decrease in 𝑊𝐶𝑆𝑆 is

elatively minimal when compared to its previous 𝑘 values.
The Silhouette Clustering method was also used in our analysis.

his method examines the within cluster-consistency by comparing
ow similar objects from a cluster are to another. Its value, 𝑆(𝑖) range
rom −1 to 1 where the lower end of the interval indicates that the
onfiguration has too much or few clusters. The closer this value is to
however, is indicative of an object that is well matched to its cluster

r poorly matched to the other clusters.
The mean similarity of point 𝑖 and all other points in the same

luster, 𝐶𝑖, is given by Eq. (3) where |

|

𝐶𝑖
|

|

denotes the number of
elements in 𝐶𝑖 and 𝑑(𝑖, 𝑗) give the distances between data points 𝑖 and

in cluster 𝐶𝑖. In this average the distances, 𝑑(𝑖, 𝑖) are not considered
hence the consideration of |

|

𝐶𝑖
|

|

− 1 in the formulation below.

𝑎𝑖 =
1

|

|

𝐶𝑖
|

|

− 1

∑

𝑗𝜀𝐶𝑖 ,𝑖≠𝑗
𝑑(𝑖, 𝑗) (3)

The smallest mean dissimilarity of point 𝑖 and all the other points
f another cluster, 𝐶𝑘, is given by 𝑏𝑖 in Eq. (4).

𝑖 = 𝑚𝑖𝑛𝑘≠𝑖
1

|

|

𝐶𝑘
|

|

∑

𝑗𝜀𝐶𝑘

𝑑(𝑖, 𝑗) (4)

This is the second best fit cluster for point 𝑖 based on the distance
metric. The Silhouette value for point 𝑖, we define as 𝑆𝑖, is given in
erms of 𝑎𝑖 and 𝑏𝑖 as seen in Eq. (5).

𝑖 =

{ (𝑏𝑖)−(𝑎𝑖)
𝑚𝑎𝑥{𝑎𝑖 ,𝑏𝑖}

if |
|

𝐶𝑖
|

|

> 1

0 if |
|

𝐶𝑖
|

|

= 1
(5)

his can be further simplified as seen below, depending on the inequal-
ty relations between the mean similarity and dissimilarity.

𝑖 =

⎧

⎪

⎨

⎪

⎩

1 − 𝑎𝑖
𝑏𝑖

if 𝑎𝑖 < 𝑏𝑖
0 if 𝑎𝑖 = 𝑏𝑖
𝑏𝑖
𝑎𝑖

− 1 if 𝑎𝑖 > 𝑏𝑖

(6)

The Gap Statistic, another consideration used in this paper, is out-
ined as follows. As previously denoted, let 𝐶𝑖 be the 𝑖th Cluster and
|

|

𝐶𝑖
|

|

be representative of the number of elements in this cluster. Let
the pairwise distances between elements say 𝑖 and 𝑗 in 𝐶𝑖, 𝑑𝑖, be given
by Eq. (7).

𝑑𝑖 =
∑

𝑖,𝑗𝜀𝐶𝑖

𝑑(𝑖, 𝑗) (7)

For a given number of clusters 𝑘, the within cluster distance for that
articular partitioning 𝑃𝑘, is given by Eq. (8). A better classification is
ndicative of a smaller 𝑊𝑘 value.

𝑘 =
𝑘
∑

𝑖=1

1
2 |
|

𝐶𝑖
|

|

𝑑𝑖 (8)

Considering the data in which the ‘true’ number of clusters is given
by 𝐺, 𝑊𝑘 should drop as 𝑘 increases until it reaches 𝐺 where it will
decrease at a much slower rate. Thus, there will be an ‘elbow’ point
in 𝑊𝑘; this 𝑘 value corresponds to the optimal number of clusters. The
Gap Method is used to compare the original data with the expected
curve, 𝐸∗

𝑛
{

𝑙𝑜𝑔(𝑊𝑘)
}

where 𝐸∗
𝑛 gives the expectation of sample 𝑛 from

he reference distribution. The Gap Statistic is the value of 𝑘 which
aximizes 𝐺𝑎𝑝𝑛(𝑘) or from Eq. (9), the cluster value where 𝑊𝑘 is at

he furthest distance from the expected curve [22].

𝑎𝑝 (𝑘) = 𝐸∗ {𝑙𝑜𝑔(𝑊 )
}

− 𝑙𝑜𝑔(𝑊 ) (9)
5

𝑛 𝑛 𝑘 𝑘
.2. Self Organizing Maps (SOM)

A Self Organizing Map (SOM) is an unsupervised clustering method
s there is no additional information being supplied to the model by a
supervisor’ [23]. In this model, high-dimensional data sets are reduced
o the two-dimensional map in which nodes with most similarity are
earest to each other and vice-versa [24]. It does this dimensionality
eduction via the usage of cluster centres which can then be interpreted
s an ’abstract representation’ of any given vector from that particular
luster [23]. It preserves topology where vectors that are near in
nput space are also mapped to nearby neurons in the SOM [21,24].
his resulting map is a projection of a multidimensional space rather
han a geographical space [24]. There are two modes of operation,
raining which builds the map using input examples through a method
alled vector quantization and mapping which classifies new input
ectors [25].

This Kohonen Neural Network is used in many applications [26]
uch as Pearce et al.’s air quality classifications [24] and in geoscience
or the extraction of climate and atmospheric circulation patterns [23].
revious studies using SOMs also include Berkovic’s [27] determination
f the wind regimes, choosing from various map sizes, the number of
odes in the rows and columns. However in our study, since we utilized
OMs for the purposes for clustering our data to be later incorporated
n our forecasting algorithm, we defined our map size based on the
ormulation written in [28]. The number of neurons, 𝑀 of the map

is determined from the number of observations, 𝑁 . It is given by the
following expression [25].

𝑀 ≈ 5
√

𝑁 (10)

According to [29], the methodology of the SOM can be achieved via
the processes of competition — where the Best Match Unit (BMU) is
identified, cooperation — where the topological neighbourhood of the
‘excited’ neurons are identified and finally adaptation — where BMU
and excited neurons are updated in accordance to the input vector.

In more detail the methodology of the SOM is as follows [28].

1. The weight vector of each of the neurons in the map is initialized
randomly.

2. The training observed data, say 𝑥𝑡, is ‘passed’ to the map as an
input vector and Euclidean distance between the all the neurons
and this vector is calculated. The neuron with the smallest
distance is termed the Best Matching Unit or (BMU). For each
input observation, the BMU is identified. We denoted this unit
as 𝑐 henceforth.

3. A neighbourhood of 𝑐 is selected and using a neighbourhood
function given by ℎ𝑐𝑖, the weighted vectors of the neighbouring
neurons, 𝑖 are updated.

ℎ𝑐𝑖(𝑡) = 𝑎(𝑡)𝑒
− ‖𝑟𝑐−𝑟𝑖‖2

2𝑅2(𝑡) (11)

𝑊𝑖(𝑡 + 1) = 𝑊𝑖(𝑡) + ℎ𝑐𝑖(𝑡)
[

𝑥𝑡 −𝑊𝑖(𝑡)
]

(12)

Where, from Eq. (11), ℎ𝑐𝑖 is the neighbouring function and 𝑡 is
an index of iteration, 𝑎(𝑡) is the learning rate, 𝑟𝑐 is vector of 𝑐,
𝑟𝑖 is the vector of the neuron 𝑖 and 𝑅 is the radius around 𝑐.
This function is a monotonically decreasing function of 𝑡 as the
learning rate decreases with the iterations during the training
process and the radii around 𝑐 decreases with 𝑡. This process
ensures that neurons 𝑖 closest to 𝑐 are being adjusted the most.
The neurons are updated in accordance to Eq. (12) where 𝑊𝑖(𝑡+
1) and 𝑊𝑖(𝑡) represent the weighted vector of neuron 𝑖 at the 𝑡+1
and 𝑡 indices of iterations respectively, ℎ𝑐𝑖 is the neighbourhood
function above and 𝑥𝑡 is the observed input vector.

4. This process is repeated in the iterative training until the clusters

are identified based on their distances.
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The data described in Section 4.2, were normalized between 0
and 1 by subtracting from each element in that particular column
of the data frame, its mean. These values are then divided by the
standard deviation of the column to give the z or standard scores.
This standardizing of the variables was done using the scale command.
These analyses were done in R studio [26]. The SOM grid was then
created using the relation of (10) where 𝑁 = 52,560 data observations
for each variable. The grid size used was 41 by 28 of hexagonal nodes
corresponding to the factor pair of 1148. This value was used instead
of the calculated numeric of 1146 because it had more factor pairs.

The following is a list of the metrics to be plotted and their descrip-
tion will be shown in the results section.

1. Node Count — This map gives the number of samples that are
mapped to each of the nodes of the map. This value should be
relatively uniform throughout the SOM. Large values in some
areas of the map is indicative for the need of a larger map
whilst empty nodes indicates that a smaller map may be more
appropriate. Generally, it is used to determine high density
areas in the map where ideally there should be a homogeneous
distribution [30].

2. Neighbourhood Distance or U-Matrix — This map gives the
distance between each node and its neigbouring neurons. It rep-
resents the Euclidean distance amongst the codebook vectors of
the respective neighbourhoods [30]. Larger distances indicates
dissimilarities and thus cluster boundaries as nodes from the
same cluster have the tendency to be closer.

3. Heat Maps — These maps separately give the distribution of each
of the parameters throughout the map. These are done for the
four variables, both scaled and unscaled.

4. Clustering of the codebook vectors — This map consists of the
codebook vectors which is the data structure that carries the
neuron’s weight vector in a 2D grid. The number of clusters or
groups is input as well as the specification to add the cluster
boundaries.

After the clusters are identified, the cluster associated with each of
the 𝑥(𝑡) vectors was determined. Continuous intervals of the clustered
2009 Columbia, MO data set, representing approximately 50% and over
of data points in that particular cluster, were established. There were
three intervals in which the majority of the vectors or rows from the
data frame belonged to two of the identified four clusters, denoted
Cluster1 to Cluster4 (we will explain more of this in the subsequent
results section). For example, Interval1 ranged from 1 to 16,000 rows
in which Cluster3 consisted of 50.2% of the vectors. Interval2 which
started at 16,001 and ended 40,500 inclusively, comprised 78.92% of
rows from Cluster2. Interval3 included vectors from 40,501 to 52,500
in which Cluster3 represented approximately 48% of this interval. It
should be noted that there were predominately two clusters which we
will also show in subsequent results of the clustering of the codebook
vectors. Another note to mention is that the entire time series of length
was not used. Instead, 52,500 rows were utilized in our analyses.
There were 16,000, 24,500, and 12,000 points in Cluster1, Cluster2 and
Cluster3 respectively.

These intervals are then separately trained and tested in time se-
ries forecasting using the Recurrent Neural Network explained in the
subsequent subsection.

3.3. Recurrent Neural Networks (RNN), Long Short- Term Memory Net-
works (LSTM)

Recurrent Neural Networks (RNN) allow information to persist via
one or more hidden states and loops that pass information from one
step to another of the network. However, for this, there exists the
vanishing gradient problem as the gradients asymptotically reduce to
0 from the repeated multiplication of weights for various time steps.
6

Long Short-Term Memory networks (LSTMs) are a special type of RNN M
that can learn these long-term dependencies. The LSTM has memory
blocks called cells where information is stored in the cell state, 𝑐𝑡 and
the hidden state, ℎ𝑡. A diagrammatic representation of the architecture
of such memory blocks or cells is seen in Fig. 4. Information is regulated
by gates by optionally allowing certain data through using sigmoid
and tanh activation functions. The output of the sigmoid function is a
number between 0 and 1, where 0 and 1 mean no and all information
goes to the cell state, respectively. Generally notated, the inputs to the
gates are the output hidden state from the previous step, ℎ𝑡−1, and
he output cell state from the previous step, 𝑐𝑡−1 and current input, 𝑥𝑡,
hich are pointwise multiplied by weight matrices, 𝑊 , and then added

o a bias, 𝑏.
There are three major gates: the forget, the input, and the output

ates.

1. The forget gate: As seen in Fig. 4, the input of this gate is 𝑥𝑡 and
ℎ𝑡−1 for that time step. These inputs are multiplied by weight
matrices and added to a bias. This value is then inputted to the
sigmoid function and a vector is outputted which corresponds
to each value in the cell state, 𝑐𝑡−1. Please refer to Eq. (13).
This vector output is multiplied to the cell state. If a 0 is output
from the sigmoid function for a particular value, the forget gate
wants the cell state to disregard that information whilst if 1 is the
sigmoid output, the forget gate wants the cell state to remember
this data.

𝑓𝑡 = 𝜎
(

𝑊𝑓 ⋅
[

ℎ𝑡−1, 𝑥𝑡
]

+ 𝑏𝑓
)

(13)

2. The input gate: The gate determines the information being stored
in the cell state. The sigmoid layer decides the data to be updated
and the tanh layer, whose output values ranges from −1 to 1,
creates a vector of possible values that could be added to the
cell state. Please refer to Eqs. (14) and (15).

𝑖𝑡 = 𝜎
(

𝑊𝑖 ⋅
[

ℎ𝑡−1, 𝑥𝑡
]

+ 𝑏𝑖
)

(14)

𝑔𝑡 = tanh
(

𝑊𝑔 ⋅
[

ℎ𝑡−1, 𝑥𝑡
]

+ 𝑏𝑔
)

(15)

The old cell state, 𝑐𝑡−1 is then used to update the new cell state
𝑐𝑡. This is done representatively by Eq. (16). The old state is
multiplied by 𝑓𝑡 to forget the information decided upon earlier
and then it is added to the product of 𝑖𝑡 and 𝑔𝑡 which is in-
dicative of the new possible values scaled to the update amount
decided upon for each value. Note that ∗ is representative of the
Hadamard or entrywise product.

𝑐𝑡 =
(

𝑓𝑡 ∗ 𝑐𝑡−1
)

+
(

𝑖𝑡 ∗ 𝑔𝑡
)

(16)

3. The output gate: A vector is created from scaling the values
in the cell state using a tanh function. The sigmoid function is
once again used as a filter to regulate what is to be outputted
from the vector mentioned previously. This can be represented
by Eq. (17). This is sent as the output and as the hidden state of
the next cell.

𝑜𝑡 = 𝜎
(

𝑊𝑜 ⋅
[

ℎ𝑡−1, 𝑥𝑡
]

+ 𝑏𝑜
)

(17)

ℎ𝑡 = 𝑜𝑡 ∗ tanh
(

𝑐𝑡
)

(18)

.4. Moving AutoRegressive Integrated Moving Average Method (ARIMA)

A moving AutoRegressive Integrated Moving Average Method
ARIMA) is used as another model in our analysis. This is a statistical
ethod which uses the relationship within the time series data in

ts construction. Data cannot be white noise, that is, purely random
ith mean = 0 and standard deviation being a constant as forecast-

ng into the future would not be possible. If this condition is met,
utoRegressive, AR(p), Moving Average, MA(q) and AutoRegressive

oving Average, ARMA(p,q) methods can be utilized. If the data are
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Fig. 4. LSTM Architecture.
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not stationary (that is not constant mean and variances), differencing
needs to be performed. An AutoRegressive Integrated Moving Average,
ARIMA (p,d,q) can be used where the Integrating part represents the 𝑑
or the differencing factor.

The AR method, a time series model, is regressed from its previous
values up to an order determined by the 𝑝 parameter. This can be seen
mathematically from Eq. (19). The Partial Autocorrelation function
(PACF) determines how many lags are to be incorporated in the AR
method; large PACF values gives the order of the model. For lag 𝑝,
the relationship between 𝑥𝑡 and 𝑥𝑡−𝑝 is determined, filtering all the
intermediate linear influence from 𝑥𝑡−1, 𝑥𝑡−2,… , 𝑥𝑡−(𝑝−1).

𝑥𝑡 = 𝛽0 + 𝛽1𝑥𝑡−1 + 𝛽2𝑥𝑡−2 +⋯ + 𝛽𝑝𝑥𝑡−𝑝 + 𝜀𝑡 (19)

Where 𝑥𝑡 and 𝑥𝑡−1, . . . , 𝑥𝑡−𝑝 are the current and previous values re-
spectively and 𝛽0 is a constant term and 𝛽1,. . . , 𝛽𝑝 are the coefficient
representing what part of 𝑥𝑡−1,. . . , 𝑥𝑡−𝑝 are relevant in explaining the
current value etc.

The MA model is written in terms of a linear combination of past
error. It gives the extent the series is related to its past errors. Generally
it can written as Eq. (20). The Autocorrelation function determines the
number of lags for the MA model. It is given by the lag value which
is statistically different from 0 and above the error band, followed by
consecutive insignificant ACF values for subsequent lags.

𝑥𝑡 = 𝑐 + 𝜀𝑡 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 +⋯ + 𝜃𝑞𝜀𝑡−𝑞 (20)

Where 𝑥𝑡 is the current value, 𝜀𝑡 and 𝜀𝑡−1,… , 𝜀𝑡−𝑞 are errors from the
current and previous predictions respectively and 𝜃1,… , 𝜃𝑞 represent
the corresponding part which is relevant in explaining the current
value.

The ARMA method is the linear combination of the linear models,
AR and MA as such they too are linear models. This method thus, takes
into account past values and errors in its formulation. Generally it can
be written as Eq. (21).

𝑥𝑡 = 𝛽0+𝛽1𝑥𝑡−1+𝛽2𝑥𝑡−2+⋯+𝛽𝑝𝑥𝑡−𝑝+𝜀𝑡+𝜃1𝜀𝑡−1+𝜃2𝜀𝑡−2+⋯+𝜃𝑞𝜀𝑡−𝑞 (21)

The differencing parameter, 𝑑 is introduced in the ARIMA models
to remove trends and seasonality. The first order difference is given by
𝛥1𝑥𝑡 = 𝑥𝑡 − 𝑥𝑡−1. This and higher orders can be written in terms of 𝐵,
the backward shift operator where 𝐵𝑥𝑡 = 𝑥𝑡−1 and 𝐵

(

𝐵𝑥𝑡
)

= 𝐵
(

𝑥𝑡−1
)

=
𝑚

7

𝑥𝑡−2. Generally for shifting an observation some 𝑚 periods, 𝐵 𝑥𝑡 = 𝑥𝑡−𝑚.
Thus, the first and second differences in terms of operator B are 𝛥1𝑥𝑡 =
𝑥𝑡 − 𝑥𝑡−1 = 𝑥𝑡 − 𝐵𝑥𝑡 = (1 − 𝐵) 𝑥𝑡 and 𝛥2𝑥𝑡 = 𝛥1𝑥𝑡 − 𝛥1𝑥𝑡−1 = (1 − 𝐵)2 𝑥𝑡
espectively. The second difference can be shown to be via expansion,
𝑡−2 − 2𝑥𝑡−1 + 𝑥𝑡.

To determine the number of differencing to use we examine the
utocorrelations. If the series has positive autocorrelations out to a
arge number of lags then the series may need differencing. If for lag
, the autocorrelation is zero or negative then the series does not need
igher order differencing. However, if for lag 1 the autocorrelation is
ess than or equal to −0.5, then the series may be over-differenced. A

model with no differencing implies that the series is stationary whilst
the assumptions are made that for the first and second differencing
of the series, the original series has a constant average trend and has
time varying trends respectively. An ARIMA(1,1,0), ARIMA(0,1,1) and
ARIMA(1,1,1) can be written mathematically as Eqs. (22a) and (22b),
(23a) and (23b), (24a) and (24b) respectively

𝛥1𝑥𝑡 = 𝛽0 + 𝛽1𝛥1𝑥𝑡−1 (22a)

⇒ 𝑥𝑡 = 𝛽0 + 𝑥𝑡−1 + 𝛽1
(

𝑥𝑡−1 − 𝑥𝑡−2
)

(22b)

𝑥𝑡 = 𝑐 + 𝛩1𝜀𝑡−1 (23a)

⇒ 𝑥𝑡 = 𝑐 + 𝑥𝑡−1 + 𝛩1𝜀𝑡−1 (23b)

𝑥𝑡 = 𝛽0 + 𝛽1𝛥1𝑥𝑡−1 + 𝛩1𝜀𝑡−1 (24a)

⇒ 𝑥𝑡 = 𝛽0 + 𝑥𝑡−1 + 𝛽1
(

𝑥𝑡−1 − 𝑥𝑡−2
)

+ 𝛩1𝜀𝑡−1 (24b)

.5. Model configuration

Model: LSTM (pressure and wind speeds as inputs) The Pytorch
tructure of the codes for this model was motivated/developed by [31].

• The data were loaded, preprocessed (by taking the larger wind
speed of the orientations at each time step) and plotted.

• The target variable was specified as wind speed along with the
forecast lead (how much we are forecasting ahead, ℎ). The target
was specified as the lag/shift of the wind speed by the forecast
lead. The features were given as wind speed and pressure. The
data were then split into the training (75%) and testing (25%)

sets from the observations. The train and test data were then
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Fig. 5. Elbow Method showing the optimal number of clusters of the data to be 4.

standardized where the values are not restricted to a particular
bounding range like normalization.

• A sequence of observations from the train and test set were
constructed. This sequence was given as a block of data from
some 𝑖th row — sequence length through row i. For i less than the
sequence length, the 1st row was padded by repeating it as many
times deemed necessary. Thus, the outputs have the number of
rows in the block equal to the sequence length.

• These sequences from data set was set in Pytorch’s dataloader
to select minibatches. However, in our model the batch sizes
selected were the entire respective train and test data sets for
the Intervals. Thus we had two features (columns), fifty sequence
length (rows) and one batch the length of the train and test sets.

• A shallow regression LSTM model was then utilized with one
hidden layer of 100 hidden units. The loss function is used to
calculate the error or the difference between the predicted and
the actual values. The loss function chosen was Mean Square Error
(MSE). The optimizer is used to make changes to the weights; it
does this to try to lower the model loss function. The optimizer
chosen was the Adaptive Moment Estimation (Adam) algorithm
with a learning rate of 0.01. An epoch is the number of times
the algorithm traverses the training data. The model was trained
using 20 epochs and was then evaluated.

4. Results

From Fig. 5, we can see that the elbow occurs at 4, indicative that
this is the optimal 𝑘. In Fig. 6, 4 has the largest 𝑆(𝑖) value indicating
that for 𝑘 = 4, the objects are well matched to their respective
clusters. Similarly, from Fig. 7, the value which maximizes 𝐺𝑎𝑝𝑛(𝑘)
is 𝑘 = 4. From the analysis of multiple methods, the bar chart in
Fig. 8 indicates that most of the methods result in an optimal 𝑘 of 4.
This is an important consideration, as mentioned in Pearce et al. [24],
because a grid with too few classes losses important information via
generalizations whilst too many classes will result in loss of statistical
power as there will exist smaller within class sample sizes.

The grid was a hexagonal structure consisting of 1148 nodes. This
structure consisted of no 𝑥 and 𝑦 axes but rather nodal positions, which
were numbered as bottom left having the least value, whose node
numbering increases from left to right [32]. As mentioned in [24],
limitations of SOMs include its grid having a finite structure, which
imposes restrictions on the map in the provision of precise information
on clustering dissimilarity. Another restriction is using set of numbers
to define the grid that in turn generalize its shape, be it a rectangle or
a square [24].
8

Fig. 6. Silhouette Clustering Method showing the optimal number of clusters of the
data to be 4.

Fig. 7. Gap Statistic showing the optimal number of clusters of the data to be 4.

Fig. 8. Methods determining optimal k show that optimally, from most methods, that
𝑘 = 4.

From the results of the SOMs, the node count plot can be seen
in Fig. 9. Since the distribution of the counts is relatively uniform
throughout the domain of the SOM, the map size is appropriate. Fig. 10
shows the neighbourhood distance in which cluster boundaries can be
identified via large nodal distances. From this map, it is evident that
there exist areas where there are greater distances representative of
the upper end of the scale and the lighter colours. This is seen for
example in the north eastern portion of the map. From the clustering
of the codebook vectors in Fig. 15, we do note that this is separated as
part of a cluster. This is contained in a smaller cluster whilst there are
two major clusters where the adjacent nodes are grouped in the same
cluster. This grid also shows, for each node, all the variables (as colour
coded) in various sector representations. The radii of the sectors varies
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Fig. 9. Node Count Plot showing the homogeneous distribution of the samples on the
map.

Fig. 10. Neighbourhood Distance or U-Matrix showing the distance between each node
and its neighbouring neurons.

Fig. 11. Heat Map showing the unscaled distribution of the wind direction values
throughout the map.

with respect to its variable [32]. The unscaled heat map for all of the
variables used in this study are seen from Figs. 11 to 14.

From the clusters of the SOMs, continuous intervals belonging to
a particular cluster were identified. These intervals are representative
of approximately 50% and more of the rows from the data frame be-
longing to a particular cluster where Interval1, Interval2 and Interval3
belonging to Cluster3, Cluster2, and Cluster3 ranged from 1 to 16,000,
16,001 to 40,500 and 40,501 to 52,500 rows respectively. The three
intervals identified by our clustering are graphed in Figs. 16–18 where
both the test and training sets are visualized. These clusters from the
SOM were utilized to optimize model performance in forecasting as
done in Browell et al.’s article [29]. The forecast horizon is from 20 min
to 2 h. As mentioned in [29], for these time scales which are used
to balance the power systems by operators, statistical methodologies
9

Fig. 12. Heat Map showing the unscaled distribution of the wind speed values
throughout the map.

Fig. 13. Heat Map showing the unscaled distribution of the temperature values
throughout the map.

Fig. 14. Heat Map showing the unscaled distribution of the pressure values throughout
the map.

inclusive of ARIMA are superior to that of results obtained from Nu-
merical Weather Predictions (NWP). This can be attributed to its low
computational cost and ease of including of new data [29].

From Table 1, the RMSE and the MAE for these intervals and various
time steps, ℎ, using the moving ARIMA model, can be seen. These
values ranged from approximately 0.6 to 1.0 ms−1. These results are
somewhat comparable to that of [29]. Browell et al. [29] used vector
autoregression in the spatial consideration of multiple locations and
for this model they obtained RMSEs of 0.96, 1.55, 2.00 ms−1 for one,
three and six hours ahead. Another study by [4] using both hourly and
10 min data in which 39 and 173 points were forecasted respectively
for each data set, have RMSEs of 1.27 ms−1 for the hourly dataset and
0.96 ms−1 for the 10 min dataset. For our time step or forecast horizon
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Fig. 15. Clustering of codebook vectors into the optimal 4 clusters identified showing there are 2 dominant clusters.
Table 1
Moving ARIMA Results for the Intervals — RMSE determined for 20 to 120 min
forecasts.

h Interval1 Interval1 Interval2 Interval2 Interval3 Interval3
(10-min) 𝑅𝑀𝑆𝐸 𝑀𝐴𝐸 𝑅𝑀𝑆𝐸 𝑀𝐴𝐸 𝑅𝑀𝑆𝐸 𝑀𝐴𝐸

2 0.7624309 0.5587051 0.6152723 0.4480265 0.738208 0.4980114
4 0.7817789 0.5783413 0.665906 0.5017876 0.756581 0.5186229
6 0.8008848 0.5957457 0.7360105 0.5666321 0.7666935 0.5284694
8 0.8154731 0.6082994 0.8106469 0.6321702 0.7712227 0.5328341
10 0.8257323 0.6171721 0.8831231 0.6938833 0.7727915 0.5341433
12 0.832471 0.622839 0.9509406 0.7507482 0.7735839 0.5348155

of ℎ equal to 6 (one hour ahead), for Interval1 and Interval3 this value
was approximately 0.8 ms−1 whilst for Interval2, it was an estimated
0.1 ms−1 less that the other two intervals.

In our analyses, the upper and lower values from this range resulted
from the run of Interval2. This is expected as this interval encompassed
most of the spring, all of the summer and the beginning of the fall. As
such it is expected that the model shows the most variability in errors
for this interval. It is expected as well that this interval has the lowest
errors as it has highest learning ability of the neurons due to its largest
training set [19]. This can be seen graphically in Fig. 19. From Table 2,
we see that the results were comparable to that of the intervals defined
by the SOMs. We note also that spring has the largest RMSE from the
moving ARIMA as expected due to the prevalence of convective storms.
Please see Fig. 20. The moving ARIMA was also trained using three
quarters of the entire data set, despite having this advantage of more
information variability in training/learning phase, these results did not
deviate significantly from the interval and the seasonal analyses.

ANN are powerful and are frequently used in time series forecasting
due to their high parallelism, among other characteristics [33]. How-
ever, the ARIMA model is widely used and has given more accurate
results for very short term forecasts [33].

The LSTM methodology was applied for the wind speed and pres-
sure time series. Pressure was chosen because it had the greatest mag-
nitude correlation with wind speed when compared with the other me-
teorological variables of wind direction and temperature. The RMSE re-
sults can be seen from Table 3. The test forecasted series for the various
intervals, together with the actual series, can be seen in Figs. 21 to 23.
From the results obtained, ARIMA incurs smaller RMSE than the LSTM
model for all intervals. Though there have been studies for which
10
Fig. 16. Interval 1 used in model runs consisting of rows 1–16,000 of the data.

Table 2
Moving ARIMA Results for 2009 data set and the seasons — RMSE determined for 20
to 120 min forecasts.

h (10-min) 2009 data set- RMSE Spring- RMSE Summer- RMSE Fall- RMSE

2 0.6943994 0.763676 0.5139139 0.6625789
4 0.711852 0.7787825 0.5504232 0.68182
6 0.730347 0.7998983 0.5724217 0.7019841
8 0.7445687 0.8185765 0.5821634 0.7278857
10 0.7543516 0.8330311 0.5854124 0.7558021
12 0.7608936 0.8438839 0.5858682 0.7844518

ARIMA outperforms ANN and SVM as mentioned in [4], there have
been RNN methods used in wind speed forecasting which performs
better that ARIMA. In [4], the errors are approximately 11 to 14 percent
less in the RNN model compared to their ARIMA method. Another
study, [1], univariate ARIMA saw higher errors than univariate RNN.
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Fig. 17. Interval 2 used in model runs consisting of rows 16,001–40,500 of the data.

Fig. 18. Interval 3 used in the model runs consisting of rows 40,501–52,500 of the
data.

The same result was observed when comparing multivariate ARIMA
with a multivariate RNN.

The reason for such results can be attributed to the difficulty of
representing the high dimensional and non-linear system using the one-
dimensional wind speed time series [3]. As such the series is lagged
using the time delay 𝜏 and the embedding dimension 𝑑 for each of the
intervals and these lagged co-ordinates were input to the LSTM model.
The 𝜏 value was determined to be 3 using Auto Mutual Information
(AMI) with the exception of Interval2 whose value was given by 2. The
𝑑 value was determined to be 6 using Cao Algorithm for all intervals.
The 𝜏 value was taken at the first local minimum for the AMI and
the 𝑑 value, as when 𝐸1(𝑑) attains saturation. Please refer to [8] for
more information on the methodologies of these parameters as well as
Figs. 24 and 25. Another study that uses the lags of the series in the
training of the ANN as input variables was [34]. It was determined in
their study that the best model was the simplest consisting of two layers
and two input and one output neurons [34].
11
Fig. 19. ARIMA Errors for the Intervals — RMSE for 20 to 120 min forecasts shows
that Interval2 which consists of most of spring, all of summer and the beginning of
fall, has the largest range of errors.

Fig. 20. ARIMA Errors for 2009 data set and the seasons — RMSE for 20 to 120 min
forecasts shows that summer and spring have the least and most errors respectively.

The results obtained can be seen in Figs. 26 to 28 for Interval1
to Interval3 respectively. The persistence model for each interval was
constructed by calculating the average for every multiple of the 6th

hour and recording these as the values of persistence for the next
consecutive 6 h or 36 time steps. The time forecast horizon, ℎ looked at
for this analysis are 60, 120, 180, 240, 300 and 360 min. The models
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Fig. 21. LSTM Interval1 showing the model forecast of forecast time 60 min or 1 h and the actual wind speed values, 𝑀𝑎𝑥1.
Fig. 22. LSTM Interval2 showing the model forecast of forecast time 60 min or 1 h and the actual wind speed values, 𝑀𝑎𝑥1.
Fig. 23. LSTM Interval3 showing the model forecast of forecast time 60 min or 1 h and the actual wind speed values, 𝑀𝑎𝑥1.
under comparison are the LSTM with lagged wind speeds as inputs, the
Moving ARIMA, the LSTM with pressure and wind speeds as inputs and
persistence. The Normalized Root Mean Squared Error (NRMSE) metric
for model evaluation was determined for all of the models. For values
of this metric exceeding 1 or 100% implies that the forecast is no better
than the mean of the data after this run. It can be noted that all models
performed better than the persistence model which stayed consistently
between 0.8 and approximately 1.0 for the three intervals. The ℎ value
of 360 min for Interval1 and Interval2 have values which are over 1.0
or representative of a forecast no better than the mean. The LSTM with
the lagged wind speeds as inputs, denoted as Lagseries, outperformed
the LSTM with the pressure and wind speeds as inputs, denoted as
12
Pressureandwind, for all of the intervals. The Moving ARIMA method
is now beaten by the lagged LSTMs for up to the 180th minute time
step in Interval2 and up to the 120th time forecast horizon in Interval1
and Interval3. The second interval as mentioned previously has most
of spring which have convective storm events, so it is expected that if
any interval is to do best in the non-linear model of the LSTM when
compared to the linear model of the ARIMA model, it would have been
Interval2. The NRMSE of the LSTM Pressureandwind tends to one faster
than the LSTM Lagseries for all of the intervals though up to the ℎ value
of 360 min, they do not exceed 1. As expected when the entire test set
was forecasted for the models (h= test set), the NRMSE for most of the
intervals exceeded 1; for the other cases, they were 0.97 and 0.98.
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Table 3
LSTM (with pressure and wind as inputs) RMSE values indicate that the Moving ARIMA
beats the LSTM for forecast times of 20 to 120 min.

h (10-min) Interval1- RMSE Interval2- RMSE Interval3- RMSE

2 0.940142796 0.975498677 0.834158971
4 1.155461471 1.219467954 0.927660403
6 1.296958276 1.257914418 0.992396502
8 1.444971761 1.35340903 1.026433109
10 1.451004208 1.432323828 1.137951695
12 2.767638696 1.502783097 1.14651633

Fig. 24. Tau or time delay for Interval2 is given by 2 using the Auto Mutual
Information (AMI).

Fig. 25. Embedding dimension for Interval2 is determined to be 6 from Cao Algorithm.

The tabulated results of the RMSE values for each of these models
can be seen in Table 4. The forecasted and the actual series for ℎ = 360
minutes for LagSeries1 to LagSeries3 can be seen in Figs. 29 to 31
respectively. Similarly, these plots for the ARIMA1 to ARIMA3 test set
can be seen in subsequent figures,Figs. 32 to 34, whilst correspondingly
the error defined as the difference between the actual test data and the
predicted test data can be viewed in Figs. 35 to 37. It can be noted,
especially for the Moving ARIMA results, there was a significant match
between the predicted and the actual series. The differences in the
actual test data and the predicted test data were varying about the zero
marker thus indicating that the trends were well captured by the model.
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Table 4
Models’ RMSE Results for the Intervals showing that the best performing model, up to
180 min or 3 h, is LagSeries.

Interval h (min) LagSeries ARIMA Pressureandwind Persistence

Interval1 60 0.372907494 0.8008848 1.307214932 1.331339773
120 0.352250278 0.832471 1.572144369 1.643609466
180 1.087379921 0.8412903 1.831567231 1.987401039
240 1.477212704 0.8436806 1.943241466 2.055514112
300 1.724707138 0.8443778 2.05444378 2.119308164
360 1.920543992 0.8444589 2.13412727 2.263135526

Interval2 60 0.238592146 0.7360105 1.276806808 1.538227218
120 0.242534049 0.9509406 1.53582464 1.734079072
180 1.067046011 1.117465 1.72837262 1.83946146
240 1.432849673 1.233804 1.822299134 1.875548504
300 1.649253577 1.312496 1.9014607 2.069048477
360 1.786658699 1.365862 1.961462493 2.284102311

Interval3 60 0.376359712 0.7666935 1.257796263 1.536880065
120 0.436734176 0.7735839 1.617069345 1.619311738
180 1.028754688 0.7734066 1.685952464 1.80858766
240 1.36522671 0.7698904 1.778578867 1.814853169
300 1.596357379 0.7602228 1.84599341 1.939363159
360 1.739204251 0.7602228 1.891493873 2.168188039

5. Future work, additional analyses and conclusion

In the model runs, the forecast variable – in our case wind speed
– can be further processed to determine if there are any patterns in
the wind speed forecast values (in terms of its accuracy) when its
actual values is less than or greater than some 𝑥 value or the difference
between consecutive actual values rates are higher than some 𝑦 value.

Yearly analysis can be done to see if there are the same number of
clusters and accuracy in forecasting (seasonal analysis — using yearly
data) is similar.

The optimal number of clusters was determined to be 4 using the
Elbow and Silhouette methods among others. SOMs were then used to
cluster the data after which three continuous intervals belonging to a
particular cluster, which represented approximately 50% and over of
the input vectors or rows from the data frame were identified. These
intervals were then inputs for the LSTMs with inputs pressure and
wind speeds, the lagged series LSTMs with embedding dimension 𝑑 and
time delay 𝜏, the Moving Window ARIMA and persistence models. It
was determined that the Moving ARIMA model is outperformed by the
lagged LSTM for at most 180 min from the runs of the defined intervals.
The lagged series improved upon the LSTM with the wind speed and
pressure series. All of these models however, performed better than the
benchmark of persistence for all time steps.
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Fig. 26. NRMSE for Interval1 using Models — LagSeries1 which is the LSTM with lagged wind speeds as inputs, ARIMA1 which is the Moving ARIMA model, Pressureandwind1
which is the LSTM with pressure and wind speeds as inputs and Persistence1 which is the Persistence model. The LagSeries1 improves upon Pressureandwind1 and beats the
Moving ARIMA for forecast times of 60 and 120 min.

Fig. 27. NRMSE for Interval2 using Models — LagSeries2 which is the LSTM with lagged wind speeds as inputs, ARIMA2 which is the Moving ARIMA model, Pressureandwind2
which is the LSTM with pressure and wind speeds as inputs and Persistence2 which is the Persistence model. The LagSeries2 improves upon Pressureandwind2 and beats the
Moving ARIMA for forecast times of 60, 120 and 180 min.

Fig. 28. NRMSE for Interval3 using Models — LagSeries3 which is the LSTM with lagged wind speeds as inputs, ARIMA3 which is the Moving ARIMA model, Pressureandwind3
which is the LSTM with pressure and wind speeds as inputs and Persistence3 which is the Persistence model. The LagSeries3 improves upon Pressureandwind3 and beats the
Moving ARIMA for forecast times of 60 and 120 min.
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Fig. 29. LagSeries1 LSTM showing the model forecast of prediction time, 6 h and the actual wind speed values, 𝑀𝑎𝑥1.
Fig. 30. Lagseries2 LSTM showing the model forecast of prediction time, 6 h and the actual wind speed values, 𝑀𝑎𝑥1.
Fig. 31. LagSeries3 LSTM showing the model forecast of prediction time, 6 h and the actual wind speed values, 𝑀𝑎𝑥1.
Fig. 32. Predictions of Moving ARIMA1 for forecast time, 6 h and the actual wind
speed values.
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Fig. 33. Predictions of Moving ARIMA2 for forecast time, 6 h and the actual wind
speed values.
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Fig. 34. Predictions of Moving ARIMA3 for forecast time, 6 h and the actual wind
speed values.

Fig. 35. Errors of Moving ARIMA1 for forecasting time, 6 h, of the test time series.

Fig. 36. Errors of Moving ARIMA2 for forecasting time, 6 h, of the test time series.

Fig. 37. Errors for Moving ARIMA3 for forecasting time, 6 h, of the test time series.
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